Discovery of a novel styrene monooxygenase originating from the metagenome.

نویسندگان

  • Erik W van Hellemond
  • Dick B Janssen
  • Marco W Fraaije
چکیده

Oxygenases form an interesting class of biocatalysts, as they typically perform oxygenations with exquisite chemo-, regio-, and/or enantioselectivity. It has been observed that, once heterologously expressed in Escherichia coli, some oxygenases are able to form the blue pigment indigo. We have exploited this characteristic to screen a metagenomic library derived from loam soil and identified a novel oxygenase. This oxygenase shows 50% sequence identity with styrene monooxygenases from pseudomonads (StyA). Only a limited number of homologs can be found in the genome sequence database, indicating that this biocatalyst is a member of a relatively small family of bacterial monooxygenases. The newly identified monooxygenase catalyzes the epoxidation of styrene and styrene derivatives and forms the corresponding (S)-epoxides with excellent enantiomeric excess [e.g., (S)-styrene oxide is formed with >99% enantiomeric excess, ee] and therefore is named styrene monooxgenase subunit A (SmoA). SmoA shows high enantioselectivity towards aromatic sulfides [e.g., (R)-ethyl phenyl sulfoxide is formed with 92% ee]. This excellent enantioselectivity in combination with the moderate sequence identity forms a clear indication that SmoA from a metagenomic origin represents a new enzyme within the small family of styrene monooxygenases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

StyA1 and StyA2B from Rhodococcus opacus 1CP: a multifunctional styrene monooxygenase system.

Two-component flavoprotein monooxygenases are emerging biocatalysts that generally consist of a monooxygenase and a reductase component. Here we show that Rhodococcus opacus 1CP encodes a multifunctional enantioselective flavoprotein monooxygenase system composed of a single styrene monooxygenase (SMO) (StyA1) and another styrene monooxygenase fused to an NADH-flavin oxidoreductase (StyA2B). St...

متن کامل

Direct electrochemical regeneration of monooxygenase subunits for biocatalytic asymmetric epoxidation.

We report the first example of direct electrochemical regeneration of a flavin-dependent monooxygenase for asymmetric epoxidation catalysis. It is shown that electrochemical regeneration of the oxygenase subunit of the multicomponent styrene monooxygenase is sufficient to perform enantiospecific S-epoxidation of various styrene derivatives. Kinetic bottlenecks of the novel electroenzymatic reac...

متن کامل

Indigo formation by microorganisms expressing styrene monooxygenase activity.

The transformation of indole to indigo by microorganisms expressing styrene monooxygenase (SMO) has been studied. Styrene and indole are structurally very similar, and thus we looked at a variety of styrene-degrading strains for indole transformation to indigo. Two strains, Pseudomonas putida S12 and CA-3, gave a blue color on solid media when grown in the presence of indole. Indole induces its...

متن کامل

Styrene metabolism in Exophiala jeanselmei and involvement of a cytochrome P-450-dependent styrene monooxygenase.

The yeast-like fungus Exophiala jeanselmei degrades styrene via initial oxidation of the vinyl side chain to phenylacetic acid, which is subsequently hydroxylated to homogentisic acid. The initial reactions are catalyzed by a NADPH- and flavin adenine dinucleotide-dependent styrene monooxygenase, a styrene oxide isomerase, and a NAD(+)-dependent phenylacetaldehyde dehydrogenase. The reduced CO-...

متن کامل

A Novel Initiator of [5-(benzyloxy)-4-oxo-4H-pyran-2-yl]methyl-2-bromo-2-methylpropanoateas in Atom Transfer Radical Polymerization of Styrene and Methyl Methacrylate

A novel nano-initiator containing kojic acid moiety, [5-(benzyloxy)-4-oxo-4H-pyran-2-yl)methyl-2-bromo-2-methylpropanoate was synthesized by the reaction of 5-(benzyloxy)-2-(hydroxymethyl)-4H-pyran-4-one with 2-bromoisobutyryl bromide in triethylamine and used as initiator in the atom transfer radical polymerization (ATRP) of styrene and methyl methacrylate in the presence of Cu(0)/CuCl2and N,N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 73 18  شماره 

صفحات  -

تاریخ انتشار 2007